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Abstract
This paper studies the effect of a porous medium and temperature-dependent
viscosity on the unsteady flow and heat transfer for a viscous laminar
incompressible fluid due to an impulsively started rotating infinite disc. The
unsteady axi-symmetric boundary layer equations are solved using three
methods, namely, (i) perturbation solution for small time, (ii) asymptotic
analysis for large time and (iii) the finite difference method together with
the Keller box elimination technique for intermediate times. The solutions
are obtained in terms of local radial skin friction, local tangential skin friction
and local rate of heat transfer at the surface of the disc, for different values
of the pertinent parameters: the Prandtl number Pr, the viscosity variation
parameter ε and porosity parameter m. The computed dimensionless velocity
and temperature profiles for Pr = 0.72 are shown graphically for different
values of ε and m.

PACS numbers: 47.11.+j, 47.60.+i, 47.15.−x, 47.65.+a

Nomenclature

r radial coordinate
z normal coordinate
u radial velocity component
v tangential velocity component
w axial velocity component
Cp specific heat at constant pressure
K Darcy permeability
f dimensionless radial velocity function

1 On leave from: Department of Engineering Mathematics and Physics, Faculty of Engineering, El-Fayoum
University, El-Fayoum, Egypt.
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g dimensionless tangential velocity function
h dimensionless axial velocity function
t time
T temperature in the flow region
Tw surface temperature
T∞ temperature of the ambient fluid
m porosity parameter
α thermal diffusivity
ε viscosity variation constant
q̄ rate of heat transfer
q dimensionless rate of heat transfer
Pr Prandtl number
ρ∞ density of the fluid
θ temperature of the fluid
µ temperature-dependent viscosity
µ∞ viscosity in the ambient fluid
κ thermal conductivity of the fluid
η dimensionless normal distance
ν kinematic coefficient of viscosity
� angular velocity
τ dimensionless time
τ̄r radial skin friction
τ̄ϕ tangential skin friction
τr dimensionless radial skin friction
τϕ dimensionless tangential skin friction

1. Introduction

Rotating disc flow and heat transfer is one of the classical problems of fluid mechanics that
has both theoretical and practical values. Heat transfer from a rotating body is of importance
for the rotating components of various types of machinery, for example, computer disk drives
[1] and gas turbine rotors [2]. In some applications where the rotating object is a candidate
for overheating, and limitations exist on the allowable rotational speed, further heat removal
is feasible by means of jet impingement. This is also a common cooling technique for some
transmission gearing where the mechanism bearings are subject to impingement cooling by a
liquid lubricant. The interaction of rotation and impingement creates a complex but powerful
flow capable of increasing heat transfer considerably.

The rotating disc problem was first formulated by von Karman [3]. He showed that the
Navier–Stokes equations for steady flow of a viscous incompressible fluid due to an infinite
rotating disc can be reduced to a set of ordinary differential equations and solved them by an
approximate integral method. Later, Cochran [4] obtained more accurate results by patching
two series expansions. It is found that the disc acts like a centrifugal fan, the fluid near the
disc being thrown radially outwards. This in turn impulses an axial flow towards the disc to
maintain continuity.

Benton [5] improved Cochran’s solutions and extended the hydrodynamics problem to
flow starting impulsively from rest. Bodewadt [6] studied the inverse problem of the disc at
rest and fluid at infinity rotating with uniform angular velocity. Roger and Lance [7] studied
numerically a similar problem with the disc rotating with different angular velocity to that of
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Figure 1. The flow configuration and coordinate system.

the surrounding fluid. Stuart [8], following a suggestion made by Batchelor [9] investigated
the effect of uniform suction of fluid from the surface of the rotating disc. The effect of
suction is essentially one of decreasing both radial and azimuthal components of the velocity
and increasing the axial flow towards the disc at infinity. The boundary layer thinned, as a
consequence. Ockendon [10] used the asymptotic method to determine the solutions of the
problem for small values of suction parameter in the case of a rotating disc in a rotating fluid.
Wagner [11], and Millsaps and Pohlhausen [12] determined the heat transfer from a disc with
uniform surface temperature different from that of isothermal surroundings. Later, Sparrow
and Gregg [13] obtained the heat transfer from a rotating disc to a fluid for arbitrary Prandtle
number. Ostrach and Thornton [14], considering the same isothermal rotating disc, extended
their investigation to a fluid with Prandtl number of 0.72 and variable physical properties.
Hartnett [15] examined the influence of variation in surface temperature on the heat transfer
from a disc rotating in still air, allowing the temperature difference between the disc surface
and the fluid at rest to vary as a power function of radius.

In all the above studies, the viscosity of the fluid was assumed to be constant. However, it
is known that this physical property may change significantly with temperature, and to predict
the flow behaviour accurately it may be necessary to take into account viscosity variation
for incompressible fluids. Gray et al [16], and Mehta and Sood [17] showed that, when this
effect is included, flow characteristics may be changed substantially compared to the constant
viscosity assumption. The present investigation is concerned with the effect of temperature-
dependent viscosity on the flow and heat transfer along a uniformly heated impulsively rotating
disc in a porous medium. The flow in the porous medium deals with the analysis in which
the differential equation governing the macroscopic fluid motion is based on the Darcy’s law
which accounts for the drag exerted by the porous medium [18–20].

2. Mathematical formalism

Let the disc lie in the plane z = 0 and the space z � 0 be occupied by homogeneous
incompressible fluid in a porous medium, where z is the vertical axis in the cylindrical
coordinate system with r and ϕ as the radial and tangential axes, respectively. The geometry
of the problem is shown in figure 1. The disc rotates with uniform angular velocity �, Tw is
the uniform temperature at the disc surface and T∞ is the temperature of the ambient fluid.
The flow is through a porous medium where the Darcy model is assumed [18–20]. The basic
equations governing the flow of the fluid in the presence of the porous medium are as follows:
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The last term in the right-hand side of equations (2) and (3), named as Brinkman equations
[21, 22], represents the Darcy force exerted by the fibres of the porous medium [18–20].
It should be pointed out that the characteristic length of the porous layer K1/2 is taken as
K1/2 < 1 for the Brinkman limit to be achieved [21, 22]. The boundary conditions for the
present problem are

z = 0 : u,w = 0, v = r�, T = Tw,

z → ∞ : u, v → 0, T → T∞.
(5)

To obtain the solutions of the governing equations, these are first converted into a convenient
form using appropriate transformations. Considering this, we can introduce the following
transformations:

u = r�
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(6)

Now substituting the above transformations into equations (1)–(4), the following non-similarity
equations are obtained:
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It should be pointed out that equations (7)–(9) are dimensionless and that their solutions only
depend on Pr, ε and m. The above equations should satisfy the following boundary conditions:

h(0, τ ) = h′(0, τ ) = 0, g(0, τ ) = 1, θ(0, τ ) = 1,

h′(∞, τ ) = g(∞, τ ) = θ(∞, τ ) = 0
(10)

where Pr (= µ∞Cp/κ) is the Prandtl number, ε is termed the viscosity variation parameter and
m (= µ∞/ρ∞K�) is the porosity parameter. Throughout, prime denotes the differentiation
with respect to η.
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Since the system of equations (7)–(9) are locally non-similar by nature, we may obtain the
solution by both the local non-similarity method introduced by Sparrow and Minkowycz [23]
and the implicit finite difference method together with the Keller box elimination technique
[24]. Here, we propose to simulate equations (7)–(9) by the finite difference method, since it is
found to be efficient and accurate as well documented and widely used by Cebici and Bradshaw
[25]. According to the aforementioned method, the system of partial differential equations
are first converted to a system of seven first-order differential equations by introducing new
functions of the η derivatives. This system is then put into a finite difference scheme in
which the resulting nonlinear difference equations are linearized by the use of Newton’s
quasi-linearization method. The resulting linear difference equations, along with the boundary
conditions, are finally solved by an efficient block-tri-diagonal factorization method introduced
by Keller [24].

The action of the viscosity in the fluid adjacent to the disc sets up a tangential shear stress,
which opposes the rotation of the disc. As a consequence, it is necessary to provide a torque
at the shaft to maintain a steady rotation. To find the tangential shear stress, τ̄ϕ , we apply the
Newtonian formula:

τ̄ϕ =
[
µ

(
∂v

∂z
+

1

r

∂w

∂ϕ

)]
z=0

. (11)

There is also a surface shear stress τ̄r in the radial direction, which can be obtained by applying
the Newtonian formula:

τ̄r =
[
µ

(
∂u

∂z
+

1

r

∂w

∂r

)]
z=0

. (12)

The rate of heat transfer from the disc surface to the fluid is computed by the application of
Fourier’s law as

q̄ = −k

(
∂T

∂z

)
z=0

. (13)

When the values of the functions h, g and θ are known, using the transformations given in (6),
we can calculate the values of dimensionless radial skin friction, tangential skin friction and
heat transfer rate from the following relation:

τr(1 + ε) =
( τ

1 + τ

)1/2
h′′(0, τ )

τϕ(1 + ε) =
( τ

1 + τ

)−1/2
g′(0, τ ) (14)

q = −
( τ

1 + τ

)−1/2
θ ′(0, τ ).

3. Small time solution

For small time, i.e. when τ � 1, then the transformations given in (6) take the following form:

u = r�τf (η, τ ), v = r�g(η, τ ), w = −4
√

ν�τ 3/2h(η, τ ),

θ(η, τ ) = T − T∞
Tw − T∞

, η = 1

2

√
�

ντ
z, τ = �t.

(15)

Introducing the above transformations, the flow governing equations (1)–(4) are reduced to
the following non-similarity equations that are valid for small time:
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(1 + εθ)h′′′ − εθ ′h′′ = (1 + εθ)2

{
4h′ − 2ηh′′ + 4τ 2h′2 − 8τ 2hh′′ − 4g2 + 4mτh′ + 4τ

∂h′
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1
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∂θ

∂τ
. (18)

The boundary conditions are as follows:

h(0, τ ) = h′(0, τ ) = 0, g(0, τ ) = 1, θ(0, τ ) = 1,

h′(∞, τ ) = g(∞, τ ) = θ(∞, τ ) = 0.
(19)

It may be noted that equations (16)–(18) are non-similar partial differential equations by nature
and of the parabolic type. Since τ � 1, we can approximate the perturbation solutions of
equations (16)–(18) by treating τ as the perturbation parameter. Hence, the functions h, g and
θ can be assumed to be of the following form:

h(η, τ ) =
∞∑
i=0

τ ihi(η), g(η, τ ) =
∞∑
i=0

τ igi(η) and θ(η, τ ) =
∞∑
i=0

τ iθi(η)

(20)

where hi(η), gi(η)and θi(η) are the functions depending on η. Now substituting expression
(20) into equations (16)–(18) and taking the terms only up to O(τ 2) gives different problems
that can be solved for the functions hn, gn and θn for n = 0, 1, 2, . . . and are presented in the
appendix.

Once the values of the functions hn, gn and θn for n = 0, 1, 2, . . . and their derivatives
are known, the values of dimensionless radial skin friction τr , tangential skin friction τϕ and
heat transfer rate q can easily be obtained from the following expressions:

τr(1 + ε) = τ 1/2h′′(0, τ ), τϕ(1 + ε) = τ−1/2g′(0, τ ), q = −τ−1/2θ ′(0, τ ). (21)

4. Large time solution

When τ � 1 then the transformations given in (6) reduce to the following form:

u = r�f (η, τ ), v = r�g(η, τ ), w = −4
√

ν�h(η, τ ),

θ(η, τ ) = T − T∞
Tw − T∞

, η = 1

2

√
�

ν
z, τ = �t.

(22)

Using the above transformations, the flow governing equations (1)–(4) take the following
form:

(1 + εθ)h′′′ − εθ ′h′′ − (1 + εθ)2

{
4h′2 − 4g2 − 8hh′′ + 4

∂h′

∂τ
+ 4mh′

}
= 0 (23)
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}
= 0 (24)
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. (25)
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(a) (b)

Figure 2. Time development of the axial velocity for (a) ε = 0.0 and (b) ε = 2.0 at infinity with
different values of the porosity parameter m.

The boundary conditions to be satisfied by the above equations are

h(0, τ ) = h′(0, τ ) = 0, g(0, τ ) = 1, θ(0, τ ) = 1,

h′(∞, τ ) = g(∞, τ ) = θ(∞, τ ) = 0.
(26)

At the steady-state situation the τ -derivative in equations (23)–(25) can be neglected. Hence,

(1 + εθ)h′′′ − εθ ′h′′ − (1 + εθ)2{4h′2 − 4g2 − 8hh′′ + 4mh′} = 0 (27)

(1 + εθ)g′′ − εθ ′g′ − (1 + εθ)2{8h′g − 8g′h + 4mg} = 0 (28)

1

Pr
θ ′′ + 8θ ′h = 0 (29)

and the boundary conditions become

h(0) = h′(0) = 0, g(0) = 1, θ(0) = 1,

h′(∞) = g(∞) = θ(∞) = 0.
(30)

The solutions of the above sets of equations are obtained using the methods adopted in the
preceding section. As before, once the values of the functions h, g and θ are known, we
can calculate the values of dimensionless radial skin friction, tangential skin friction and heat
transfer rate from the following relations:

τr(1 + ε) = h′′(0), τϕ(1 + ε) = g′(0), q = −θ ′(0). (31)

5. Results and discussion

Numerical simulations were carried out for the motion of a fluid having Prandtl number Pr
equal to 0.72 (suitable for air), while the viscosity variation parameter ε = 0.0, 1.0, 2.0 and 3.0.
The results are presented in terms of non-dimensional local radial skin friction and tangential
skin friction, as well as the rate of heat transfer at the disc surface, against the time-dependent
parameter τ .

The growth of the axial velocity component against time is depicted in figure 2: (a) for
ε = 0.0 and (b) for ε = 2.0, for different values of porosity parameter m = 0.0, 1.0, 2.0 and
3.0 and for Pr = 0.72. In figure 2(a), for constant viscosity (ε = 0.0), it can be seen that
increasing the value of the porosity parameter m leads to a reduction in the (negative) axial
velocity towards the disc, from −0.88 to −0.061 in the steady state. In figure 2(b), axial
velocity reduces from −0.59 to −0.036 with increase in m for ε = 2.0. For the uniform
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Table 1. Numerical values of the local rate of heat transfer q obtained by different methods for
Pr = 0.72, and ε = 0.0 and 2.0, and the porosity parameter m = 0.0 and 1.0.

ε = 0.0 ε = 2.0

τ Series and asymptotic Keller box Series and asymptotic Keller box

m = 0.0
0.01 0.9591s 0.959 18 0.959 10s 0.959 18
0.10 3.034 43s 3.041 44 3.034 28s 3.041 28
0.20 2.148 81s 2.153 48 2.148 40s 2.152 99
0.30 1.758 78s 1.762 28 1.758 02s 1.761 31
0.40 1.528 34s 1.531 06 1.527 16s 1.529 49
0.50 1.372 95s 1.375 07 1.371 32s 1.372 77
0.60 1.259 99s 1.261 56 1.257 84s 1.258 43
0.70 1.173 81s 1.174 82 1.171 10s 1.170 77
0.80 1.105 86s 1.106 27 1.102 55s 1.101 20
0.90 1.051 02s 1.050 73 1.047 06s 1.044 57
1.00 1.005 99s 1.004 89 1.001 36s 0.997 57
∞ 0.657 19a 0.657 19 0.575 43a 0.575 43

m = 1.0
0.0001 95.910 19s 95.9186 95.910 19s 95.9186
0.10 3.034 43s 3.041 38 3.034 28s 3.041 22
0.20 2.148 81s 2.153 12 2.148 40s 2.152 64
0.30 1.758 78s 1.761 31 1.758 02s 1.760 39
0.40 1.528 34s 1.529 14 1.527 16s 1.527 69
0.50 1.372 95s 1.371 84 1.371 32s 1.369 78
0.60 1.259 99s 1.256 65 1.257 84s 1.253 93
0.70 1.173 81s 1.167 88 1.171 10s 1.164 47
0.80 1.105 86s 1.096 96 1.102 55s 1.092 81
0.90 1.051 02s 1.038 73 1.047 06s 1.033 84
1.00 1.005 99s 0.989 90 1.001 36s 0.984 26
∞ 0.335 80a 0.335 80 0.273 30a 0.273 30

a For large r and s for small τ .

viscosity case, the porosity has more apparent effect on the axial velocity than in the case of
variable viscosity (i.e., ε �= 0.0).

Numerical values of the local rate of heat transfer, for ε = 0.0 and ε = 2.0 and different
values of m for the fluid with Pr = 0.72, are displayed in table 1. From table 1 it can be seen
that the effect of porosity parameter m on the heat transfer rate in the small-time-dominated
regime is negligible for both values of the viscosity variation parameter ε. At the large-time-
dominated regime, the porosity affects the rate of heat transfer significantly for both uniform
and variable viscosity. An increase in the viscosity variation parameter ε leads to a decrease
in the values of local heat transfer rate for each value of m far from the disc surface.

The perturbation solutions for small τ , asymptotic solutions for large τ and the finite
difference solutions for the entire τ regime are illustrated in figures 3 and 4 for comparison.
Comparison between these solutions shows excellent agreement in the respective regimes, i.e.
for small and large times.

The effects of porosity parameter m = 0.0, 1.0, 2.0 and 3.0 on the dimensionless radial
skin friction, as well as tangential skin friction, for the fluid with Pr = 0.72, are depicted in
figures 3(a), 4(a) and 3(b), 4(b) for ε = 0.0 and ε = 2.0, respectively. From figure 3, it can be
seen that an increasing value of m causes a decrease in radial skin friction, whereas the radial
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(a) (b)

Figure 3. Non-dimensional radical skin friction τr (1 + ε) against τ for different values of the
porosity parameter m, while Pr = 0.72: (a) ε = 0.0 and (b) ε = 2.0.

(a) (b)

Figure 4. Non-dimensional tangential skin friction τϕ(1 + ε) against τ for different values of the
porosity parameter m, while Pr = 0.72: (a) ε = 0.0 and (b) ε = 2.0.

skin friction increases monotonically as τ increases and eventually reaches a constant value.
Further inspection of figure 3 reveals the fact that the approach of the radial skin friction to
the asymptotic state becomes slower as ε increases.

From figure 4, it is observed that the tangential skin friction decreases with a decrease
in the values of the porosity parameter m. Further, it may be seen that the tangential skin
friction decreases monotonically as τ increases up to a steady-state value. Increasing value
of ε leads to a decrease in values of dimensionless radial velocity. Further inspection of
figure 5(a) reveals that an increase in the porosity parameter m causes a significant decrease
in radial velocities and thinning of the momentum boundary layer. In the non-porous case
(m = 0.0) and for constant viscosity, the maximum radial velocity appears at η = 0.45; whereas
for m = 1.0, the maximum radial velocity appears at η = 0.30, i.e. the point of maximum
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(a) (b)

(c) (d )

Figure 5. The dimensionless (a) radical skin friction f (η, τ ), (b) tangential velocity profile g(η, τ ),
(c) axial velocity profile −h(η, τ) and (d) temperature profile θ(η, τ ) against η for different values
of ε = 0.0, 2.0, 4.0 and with m = 0.0, 1.0 for Pr = 0.72.

radial velocity moves closer to the surface of the disc. In figure 5(b), we see that an increase
in ε also leads to a decrease in tangential velocities in the boundary layer for both values
of the porosity parameter (m = 0.0 and 1.0). In figure 5(c), the non-dimensional (negative)
axial velocity decreases negatively from 0.22 to 0.11 with increase in the value of ε for m =
0.0. In the porous case (m = 1.0), the axial velocity more rapidly approaches the steady-state
situation with increase in the viscosity variation ε. From figure 5(d), it may be observed that
temperature profiles and the thermal boundary layer thickness increase with increasing value
of ε for both m = 0.0 and m = 1.0.

6. Conclusions

In this paper, the effects of porosity of the medium and temperature-dependent viscosity
on the behaviour of unsteady flow of an incompressible viscous fluid due to an impulsively
started rotating disc have been investigated. The local non-similarity equations governing
the unsteady flow and heat transfer are developed for small time and large time regimes as
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well as in the entire time regime. Different solution methodologies have been employed for
the complete integration of the resulting non-similarity equations, namely, (i) perturbation
solutions, (ii) asymptotic solutions and (iii) implicit finite difference methods with the Keller
box elimination technique, for small time and large time regimes as well as in the entire time
regime, as appropriate.

From the present investigation, we can draw the following conclusions:

(1) The solutions obtained for the cases of small time regime and large time regime are found
to be in excellent agreement with that for the entire time regime, at every selected value
of the porosity parameter m over the range of 0 � τ � 8 with ε = 0.0 and 2.0, and Pr =
0.72.

(2) At the surface of the disc, the local radial skin friction increases, whereas the local
tangential skin friction decreases with increasing values of the time-dependent rotating
parameter τ in both the porous and non-porous cases until the steady-state flow limit is
reached.

(3) Increasing the value of the viscosity variation parameter ε = 0.0, 2.0 and 4.0 leads to
decrease in the values of radial and tangential velocity profile in both the porous and
non-porous cases for the fixed value of Prandtl number Pr = 0.72.

(4) Increasing the value of the viscosity variation parameter ε = 0.0, 2.0 and 4.0 reduces the
axial velocity towards the disc surface for both cases m = 0.0 and m = 1.0.

(5) The effect of increasing the value of the viscosity variation parameter ε = 0.0, 2.0 and
4.0 on the dimensionless radial, tangential and axial velocity profiles is to reduce the
momentum boundary layer thickness, for both cases when m = 0.0 and 1.0 for Prandtl
number Pr = 0.72.

(6) As the value of the viscosity variation parameter ε increases, values of dimensionless
temperature also increase for both cases m = 0.0 and m = 1.0. This effect causes a small
increase in the thermal boundary layer thickness in the non-porous case, but for m = 1.0
there is a greater increase in the thermal boundary layer thickness for Prandtl number
Pr = 0.72.

(7) The effect of the porosity parameter m = 0.0 and 1.0 on the local rate of heat transfer
is negligible near the disc surface for ε = 0.0 and 2.0, but at the outer edge of the disc
surface significant effects are found on the heat transfer rate for both values of m, again
for Pr = 0.72.

Appendix

(1 + εθ0)h
′′′
0 − εθ ′

0h
′
0 = (1 + εθ0)

2
{
4h′

0 − 2ηh′′
0 − 4g2

0

}
(A.1)

(1 + εθ0)g
′′
0 = εθ ′

0g
′
0 − 2η(1 + εθ0)

2g′
0 (A.2)

1

Pr
θ ′′

0 + 2ηθ ′
0 = 0 (A.3)

h0(0) = h′
0(0) = 0, g0(0) = θ0(0) = 1, h′

0(∞) = 0, g0(∞) = θ0(∞) = 0

(A.4)
(1 + εθ0)h

′′′
1 + ε(θ1h

′′′
0 − θ ′

1h
′′
0 − θ ′

0h
′′
1) − (1 + εθ0)

2{8h′
1 − 2ηh′′

1 − 8g0g1 + 4mh′
0}

− (2εθ1 + 2ε2θ0θ1)
{
4h′

0 − 2ηh′′
0 − 4g2

0

} = 0 (A.5)

(1 + εθ0)g
′′
1 + ε(θ1g

′′
0 − g′

0θ
′
1 − g′

1θ
′
0) − (1 + εθ0)

2{4g1 − 2ηg′ + 4mg0}
+ 2η(2εθ1 + 2ε2θ0θ1)g

′
0 = 0 (A.6)
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1

Pr
θ ′′

1 + 2ηθ ′
1 = 4θ1 (A.7)

h1(0) = h′
1(0) = 0, g1(0) = θ1(0) = 0,

h′
1(∞) = 0, g1(∞) = θ1(∞) = 0

(A.8)

(1 + εθ0)h
′′′
2 + ε(θ2h

′′′
0 + θ1h

′′′
1 − θ ′

2h
′′
0 − θ ′

1h
′′
1 − θ ′

0h
′′
2)

− (1 + εθ0)
2
{
12h′

2 − 2ηh′′
2 + 4h′2

0 − 8h′′
0h0 − 8g0g2 − 4g2

1 + 4mh′
1

}
− (2εθ1 + 2ε2θ0θ1)

{
8h′

1 − 2ηh′′
1 − 8g0g1 + 4mh′

0

}
− (

2εθ2 + ε2
(
2θ0θ2 + θ2

1

)) {
4h′

0 − 2ηh′′
0 − 4g2

0

} = 0 (A.9)

(1 + εθ0)g
′′
2 + ε(θ2g

′′
0 + θ1g

′′
1 − θ ′

2g
′
0 − θ ′

1g
′
1 − θ ′

0g
′
2)

− (1 + εθ0)
2
{
8g2 − 2ηg′

2 + 8h′
0g0 − 8g′

0h1 + 4mg1
}

− (
2η(2εθ2 + ε2

(
2θ0θ2 + θ2

1

))
g′

0 = 0 (A.10)

1

Pr
θ ′′

2 + 2ηθ ′
2 − 8θ ′

0h0 = 8θ2 (A.11)

h2(0) = h′
2(0) = 0, g2(0) = θ2(0) = 0,

h′
2(∞) = 0, g2(∞) = θ2(∞) = 0

(A.12)

It can be seen that equations (A.1) and (2) are coupled and nonlinear by nature for the case
of a fluid possessing variable viscosity (ε �= 0.0) and the solution of which is not possible
analytically. A similar situation prevails for the subsequent sets. Numerical solutions of
equations (A.1)–(A.4) are obtained using the Nachtshiem–Swigert iteration [26] together
with the sixth-order implicit Runge–Kutta–Butcher [27] initial value solver. Solutions of the
subsequent sets of equations (A.5)–(A.11) are also obtained by the above method for different
values of the pertinent parameters.
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